Paper ID: 2301.08918
Improving Signed Propagation of Graph Neural Network Under Multiple Classes
Yoonhyuk Choi, Jiho Choi, Taewook Ko, Chong-Kwon Kim
Message-passing Graph Neural Networks (GNNs), which collect information from adjacent nodes achieve dismal performance on heterophilic graphs. Various schemes have been proposed to solve this problem, and propagating signed information on heterophilic edges has gained great attention. Recently, some works provided theoretical analysis that signed propagation always leads to performance improvement under a binary class scenario. However, we notice that prior analyses do not align well with multi-class benchmark datasets. This paper provides a new understanding of signed propagation for multi-class scenarios and points out two drawbacks in terms of message-passing and parameter update: (1) Message-passing: if two nodes belong to different classes but have a high similarity, signed propagation can decrease the separability. (2) Parameter update: the prediction uncertainty (e.g., conflict evidence) of signed neighbors increases during training, which can impede the stability of the algorithm. Based on the observation, we introduce two novel strategies for improving signed propagation under multi-class graphs. The proposed scheme combines calibration to secure robustness while reducing uncertainty. We show the efficacy of our theorem through extensive experiments on six benchmark graph datasets.
Submitted: Jan 21, 2023