Paper ID: 2301.09667

Improving Performance of Object Detection using the Mechanisms of Visual Recognition in Humans

Amir Ghasemi, Nasrin Bayat, Fatemeh Mottaghian, Akram Bayat

Object recognition systems are usually trained and evaluated on high resolution images. However, in real world applications, it is common that the images have low resolutions or have small sizes. In this study, we first track the performance of the state-of-the-art deep object recognition network, Faster- RCNN, as a function of image resolution. The results reveals negative effects of low resolution images on recognition performance. They also show that different spatial frequencies convey different information about the objects in recognition process. It means multi-resolution recognition system can provides better insight into optimal selection of features that results in better recognition of objects. This is similar to the mechanisms of the human visual systems that are able to implement multi-scale representation of a visual scene simultaneously. Then, we propose a multi-resolution object recognition framework rather than a single-resolution network. The proposed framework is evaluated on the PASCAL VOC2007 database. The experimental results show the performance of our adapted multi-resolution Faster-RCNN framework outperforms the single-resolution Faster-RCNN on input images with various resolutions with an increase in the mean Average Precision (mAP) of 9.14% across all resolutions and 1.2% on the full-spectrum images. Furthermore, the proposed model yields robustness of the performance over a wide range of spatial frequencies.

Submitted: Jan 23, 2023