Paper ID: 2301.09742
Topological Understanding of Neural Networks, a survey
Tushar Pandey
We look at the internal structure of neural networks which is usually treated as a black box. The easiest and the most comprehensible thing to do is to look at a binary classification and try to understand the approach a neural network takes. We review the significance of different activation functions, types of network architectures associated to them, and some empirical data. We find some interesting observations and a possibility to build upon the ideas to verify the process for real datasets. We suggest some possible experiments to look forward to in three different directions.
Submitted: Jan 23, 2023