Paper ID: 2301.09756

Earthquake Magnitude and b value prediction model using Extreme Learning Machine

Gunbir Singh Baveja, Jaspreet Singh

Earthquake prediction has been a challenging research area for many decades, where the future occurrence of this highly uncertain calamity is predicted. In this paper, several parametric and non-parametric features were calculated, where the non-parametric features were calculated using the parametric features. $8$ seismic features were calculated using Gutenberg-Richter law, the total recurrence, and the seismic energy release. Additionally, criterions such as Maximum Relevance and Maximum Redundancy were applied to choose the pertinent features. These features along with others were used as input for an Extreme Learning Machine (ELM) Regression Model. Magnitude and time data of $5$ decades from the Assam-Guwahati region were used to create this model for magnitude prediction. The Testing Accuracy and Testing Speed were computed taking the Root Mean Squared Error (RMSE) as the parameter for evaluating the mode. As confirmed by the results, ELM shows better scalability with much faster training and testing speed (up to a thousand times faster) than traditional Support Vector Machines. The testing RMSE came out to be around $0.097$. To further test the model's robustness -- magnitude-time data from California was used to calculate the seismic indicators which were then fed into an ELM and then tested on the Assam-Guwahati region. The model proves to be robust and can be implemented in early warning systems as it continues to be a major part of Disaster Response and management.

Submitted: Jan 23, 2023