Paper ID: 2301.09791

Quantification of Damage Using Indirect Structural Health Monitoring

Achyuth Madabhushi

Structural health monitoring is important to make sure bridges do not fail. Since direct monitoring can be complicated and expensive, indirect methods have been a focus on research. Indirect monitoring can be much cheaper and easier to conduct, however there are challenges with getting accurate results. This work focuses on damage quantification by using accelerometers. Tests were conducted on a model bridge and car with four accelerometers attached to to the vehicle. Different weights were placed on the bridge to simulate different levels of damage, and 31 tests were run for 20 different damage levels. The acceleration data collected was normalized and a Fast-Fourier Transform (FFT) was performed on that data. Both the normalized acceleration data and the normalized FFT data were inputted into a Non-Linear Principal Component Analysis (separately) and three principal components were extracted for each data set. Support Vector Regression (SVR) and Gaussian Process Regression (GPR) were used as the supervised machine learning methods to develop models. Multiple models were created so that the best one could be selected, and the models were compared by looking at their Mean Squared Errors (MSE). This methodology should be applied in the field to measure how effective it can be in real world applications.

Submitted: Jan 24, 2023