Paper ID: 2301.09930

Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stability

Pavan Vynatheya, Rosemary A. Mardling, Adrian S. Hamers

The dynamical stability of quadruple-star systems has traditionally been treated as a problem involving two `nested' triples which constitute a quadruple. In this novel study, we employed a machine learning algorithm, the multi-layer perceptron (MLP), to directly classify 2+2 and 3+1 quadruples based on their stability (or long-term boundedness). The training data sets for the classification, comprised of $5\times10^5$ quadruples each, were integrated using the highly accurate direct $N$-body code MSTAR. We also carried out a limited parameter space study of zero-inclination systems to directly compare quadruples to triples. We found that both our quadruple MLP models perform better than a `nested' triple MLP approach, which is especially significant for 3+1 quadruples. The classification accuracies for the 2+2 MLP and 3+1 MLP models are 94% and 93% respectively, while the scores for the `nested' triple approach are 88% and 66% respectively. This is a crucial implication for quadruple population synthesis studies. Our MLP models, which are very simple and almost instantaneous to implement, are available on GitHub, along with Python3 scripts to access them.

Submitted: Jan 24, 2023