Paper ID: 2301.10152

How Jellyfish Characterise Alternating Group Equivariant Neural Networks

Edward Pearce-Crump

We provide a full characterisation of all of the possible alternating group ($A_n$) equivariant neural networks whose layers are some tensor power of $\mathbb{R}^{n}$. In particular, we find a basis of matrices for the learnable, linear, $A_n$-equivariant layer functions between such tensor power spaces in the standard basis of $\mathbb{R}^{n}$. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.

Submitted: Jan 24, 2023