Paper ID: 2301.13445
A Survey of Explainable AI in Deep Visual Modeling: Methods and Metrics
Naveed Akhtar
Deep visual models have widespread applications in high-stake domains. Hence, their black-box nature is currently attracting a large interest of the research community. We present the first survey in Explainable AI that focuses on the methods and metrics for interpreting deep visual models. Covering the landmark contributions along the state-of-the-art, we not only provide a taxonomic organization of the existing techniques, but also excavate a range of evaluation metrics and collate them as measures of different properties of model explanations. Along the insightful discussion on the current trends, we also discuss the challenges and future avenues for this research direction.
Submitted: Jan 31, 2023