Paper ID: 2302.00219

Knowledge Distillation on Graphs: A Survey

Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, Nitesh V. Chawla

Graph Neural Networks (GNNs) have attracted tremendous attention by demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices due to model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, knowledge distillation on graphs (KDG) has been introduced to build a smaller yet effective model and exploit more knowledge from data, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce KDG challenges and bases, then categorize and summarize existing works of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. Finally, we share our thoughts on future research directions.

Submitted: Feb 1, 2023