Paper ID: 2302.00848
Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
Zhixuan Chu, Jianmin Huang, Ruopeng Li, Wei Chu, Sheng Li
Causal inference has numerous real-world applications in many domains, such as health care, marketing, political science, and online advertising. Treatment effect estimation, a fundamental problem in causal inference, has been extensively studied in statistics for decades. However, traditional treatment effect estimation methods may not well handle large-scale and high-dimensional heterogeneous data. In recent years, an emerging research direction has attracted increasing attention in the broad artificial intelligence field, which combines the advantages of traditional treatment effect estimation approaches (e.g., propensity score, matching, and reweighing) and advanced machine learning approaches (e.g., representation learning, adversarial learning, and graph neural networks). Although the advanced machine learning approaches have shown extraordinary performance in treatment effect estimation, it also comes with a lot of new topics and new research questions. In view of the latest research efforts in the causal inference field, we provide a comprehensive discussion of challenges and opportunities for the three core components of the treatment effect estimation task, i.e., treatment, covariates, and outcome. In addition, we showcase the promising research directions of this topic from multiple perspectives.
Submitted: Feb 2, 2023