Paper ID: 2302.01512
Spectral Aware Softmax for Visible-Infrared Person Re-Identification
Lei Tan, Pingyang Dai, Qixiang Ye, Mingliang Xu, Yongjian Wu, Rongrong Ji
Visible-infrared person re-identification (VI-ReID) aims to match specific pedestrian images from different modalities. Although suffering an extra modality discrepancy, existing methods still follow the softmax loss training paradigm, which is widely used in single-modality classification tasks. The softmax loss lacks an explicit penalty for the apparent modality gap, which adversely limits the performance upper bound of the VI-ReID task. In this paper, we propose the spectral-aware softmax (SA-Softmax) loss, which can fully explore the embedding space with the modality information and has clear interpretability. Specifically, SA-Softmax loss utilizes an asynchronous optimization strategy based on the modality prototype instead of the synchronous optimization based on the identity prototype in the original softmax loss. To encourage a high overlapping between two modalities, SA-Softmax optimizes each sample by the prototype from another spectrum. Based on the observation and analysis of SA-Softmax, we modify the SA-Softmax with the Feature Mask and Absolute-Similarity Term to alleviate the ambiguous optimization during model training. Extensive experimental evaluations conducted on RegDB and SYSU-MM01 demonstrate the superior performance of the SA-Softmax over the state-of-the-art methods in such a cross-modality condition.
Submitted: Feb 3, 2023