Paper ID: 2302.02023

TextShield: Beyond Successfully Detecting Adversarial Sentences in Text Classification

Lingfeng Shen, Ze Zhang, Haiyun Jiang, Ying Chen

Adversarial attack serves as a major challenge for neural network models in NLP, which precludes the model's deployment in safety-critical applications. A recent line of work, detection-based defense, aims to distinguish adversarial sentences from benign ones. However, {the core limitation of previous detection methods is being incapable of giving correct predictions on adversarial sentences unlike defense methods from other paradigms.} To solve this issue, this paper proposes TextShield: (1) we discover a link between text attack and saliency information, and then we propose a saliency-based detector, which can effectively detect whether an input sentence is adversarial or not. (2) We design a saliency-based corrector, which converts the detected adversary sentences to benign ones. By combining the saliency-based detector and corrector, TextShield extends the detection-only paradigm to a detection-correction paradigm, thus filling the gap in the existing detection-based defense. Comprehensive experiments show that (a) TextShield consistently achieves higher or comparable performance than state-of-the-art defense methods across various attacks on different benchmarks. (b) our saliency-based detector outperforms existing detectors for detecting adversarial sentences.

Submitted: Feb 3, 2023