Paper ID: 2302.02314
CECT: Controllable Ensemble CNN and Transformer for COVID-19 Image Classification
Zhaoshan Liu, Lei Shen
The COVID-19 pandemic has resulted in hundreds of million cases and numerous deaths worldwide. Here, we develop a novel classification network CECT by controllable ensemble convolutional neural network and transformer to provide a timely and accurate COVID-19 diagnosis. The CECT is composed of a parallel convolutional encoder block, an aggregate transposed-convolutional decoder block, and a windowed attention classification block. Each block captures features at different scales from 28 $\times$ 28 to 224 $\times$ 224 from the input, composing enriched and comprehensive information. Different from existing methods, our CECT can capture features at both multi-local and global scales without any sophisticated module design. Moreover, the contribution of local features at different scales can be controlled with the proposed ensemble coefficients. We evaluate CECT on two public COVID-19 datasets and it reaches the highest accuracy of 98.1% in the intra-dataset evaluation, outperforming existing state-of-the-art methods. Moreover, the developed CECT achieves an accuracy of 90.9% on the unseen dataset in the inter-dataset evaluation, showing extraordinary generalization ability. With remarkable feature capture ability and generalization ability, we believe CECT can be extended to other medical scenarios as a powerful diagnosis tool. Code is available at https://github.com/NUS-Tim/CECT.
Submitted: Feb 5, 2023