Paper ID: 2302.02528
Personalized Interpretable Classification
Zengyou He, Yifan Tang, Lianyu Hu, Mudi Jiang, Yan Liu
How to interpret a data mining model has received much attention recently, because people may distrust a black-box predictive model if they do not understand how the model works. Hence, it will be trustworthy if a model can provide transparent illustrations on how to make the decision. Although many rule-based interpretable classification algorithms have been proposed, all these existing solutions cannot directly construct an interpretable model to provide personalized prediction for each individual test sample. In this paper, we make a first step towards formally introducing personalized interpretable classification as a new data mining problem to the literature. In addition to the problem formulation on this new issue, we present a greedy algorithm called PIC (Personalized Interpretable Classifier) to identify a personalized rule for each individual test sample. To demonstrate the necessity, feasibility and advantages of such a personalized interpretable classification method, we conduct a series of empirical studies on real data sets. The experimental results show that: (1) The new problem formulation enables us to find interesting rules for test samples that may be missed by existing non-personalized classifiers. (2) Our algorithm can achieve the same-level predictive accuracy as those state-of-the-art (SOTA) interpretable classifiers. (3) On a real data set for predicting breast cancer metastasis, such a personalized interpretable classifier can outperform SOTA methods in terms of both accuracy and interpretability.
Submitted: Feb 6, 2023