Paper ID: 2302.04977
Mithridates: Auditing and Boosting Backdoor Resistance of Machine Learning Pipelines
Eugene Bagdasaryan, Vitaly Shmatikov
Machine learning (ML) models trained on data from potentially untrusted sources are vulnerable to poisoning. A small, maliciously crafted subset of the training inputs can cause the model to learn a "backdoor" task (e.g., misclassify inputs with a certain feature) in addition to its main task. Recent research proposed many hypothetical backdoor attacks whose efficacy heavily depends on the configuration and training hyperparameters of the target model. Given the variety of potential backdoor attacks, ML engineers who are not security experts have no way to measure how vulnerable their current training pipelines are, nor do they have a practical way to compare training configurations so as to pick the more resistant ones. Deploying a defense requires evaluating and choosing from among dozens of research papers and re-engineering the training pipeline. In this paper, we aim to provide ML engineers with pragmatic tools to audit the backdoor resistance of their training pipelines and to compare different training configurations, to help choose one that best balances accuracy and security. First, we propose a universal, attack-agnostic resistance metric based on the minimum number of training inputs that must be compromised before the model learns any backdoor. Second, we design, implement, and evaluate Mithridates a multi-stage approach that integrates backdoor resistance into the training-configuration search. ML developers already rely on hyperparameter search to find configurations that maximize the model's accuracy. Mithridates extends this standard tool to balance accuracy and resistance without disruptive changes to the training pipeline. We show that hyperparameters found by Mithridates increase resistance to multiple types of backdoor attacks by 3-5x with only a slight impact on accuracy. We also discuss extensions to AutoML and federated learning.
Submitted: Feb 9, 2023