Paper ID: 2302.05886
An unsupervised learning approach for predicting wind farm power and downstream wakes using weather patterns
Mariana C A Clare, Simon C Warder, Robert Neal, B Bhaskaran, Matthew D Piggott
Wind energy resource assessment typically requires numerical models, but such models are too computationally intensive to consider multi-year timescales. Increasingly, unsupervised machine learning techniques are used to identify a small number of representative weather patterns to simulate long-term behaviour. Here we develop a novel wind energy workflow that for the first time combines weather patterns derived from unsupervised clustering techniques with numerical weather prediction models (here WRF) to obtain efficient and accurate long-term predictions of power and downstream wakes from an entire wind farm. We use ERA5 reanalysis data clustering not only on low altitude pressure but also, for the first time, on the more relevant variable of wind velocity. We also compare the use of large-scale and local-scale domains for clustering. A WRF simulation is run at each of the cluster centres and the results are aggregated using a novel post-processing technique. By applying our workflow to two different regions, we show that our long-term predictions agree with those from a year of WRF simulations but require less than 2% of the computational time. The most accurate results are obtained when clustering on wind velocity. Moreover, clustering over the Europe-wide domain is sufficient for predicting wind farm power output, but downstream wake predictions benefit from the use of smaller domains. Finally, we show that these downstream wakes can affect the local weather patterns. Our approach facilitates multi-year predictions of power output and downstream farm wakes, by providing a fast, accurate and flexible methodology that is applicable to any global region. Moreover, these accurate long-term predictions of downstream wakes provide the first tool to help mitigate the effects of wind energy loss downstream of wind farms, since they can be used to determine optimum wind farm locations.
Submitted: Feb 12, 2023