Paper ID: 2302.06335
Online Arbitrary Shaped Clustering through Correlated Gaussian Functions
Ole Christian Eidheim
There is no convincing evidence that backpropagation is a biologically plausible mechanism, and further studies of alternative learning methods are needed. A novel online clustering algorithm is presented that can produce arbitrary shaped clusters from inputs in an unsupervised manner, and requires no prior knowledge of the number of clusters in the input data. This is achieved by finding correlated outputs from functions that capture commonly occurring input patterns. The algorithm can be deemed more biologically plausible than model optimization through backpropagation, although practical applicability may require additional research. However, the method yields satisfactory results on several toy datasets on a noteworthy range of hyperparameters.
Submitted: Feb 13, 2023