Paper ID: 2302.07778
Measuring the Instability of Fine-Tuning
Yupei Du, Dong Nguyen
Fine-tuning pre-trained language models on downstream tasks with varying random seeds has been shown to be unstable, especially on small datasets. Many previous studies have investigated this instability and proposed methods to mitigate it. However, most studies only used the standard deviation of performance scores (SD) as their measure, which is a narrow characterization of instability. In this paper, we analyze SD and six other measures quantifying instability at different levels of granularity. Moreover, we propose a systematic framework to evaluate the validity of these measures. Finally, we analyze the consistency and difference between different measures by reassessing existing instability mitigation methods. We hope our results will inform the development of better measurements of fine-tuning instability.
Submitted: Feb 15, 2023