Paper ID: 2302.07989

From Graph Generation to Graph Classification

Oliver Schulte

This note describes a new approach to classifying graphs that leverages graph generative models (GGM). Assuming a GGM that defines a joint probability distribution over graphs and their class labels, I derive classification formulas for the probability of a class label given a graph. A new conditional ELBO can be used to train a generative graph auto-encoder model for discrimination. While leveraging generative models for classification has been well explored for non-relational i.i.d. data, to our knowledge it is a novel approach to graph classification.

Submitted: Feb 15, 2023