Paper ID: 2302.08038
Fuzzy Knowledge Distillation from High-Order TSK to Low-Order TSK
Xiongtao Zhang, Zezong Yin, Yunliang Jiang, Yizhang Jiang, Danfeng Sun, Yong Liu
High-order Takagi-Sugeno-Kang (TSK) fuzzy classifiers possess powerful classification performance yet have fewer fuzzy rules, but always be impaired by its exponential growth training time and poorer interpretability owing to High-order polynomial used in consequent part of fuzzy rule, while Low-order TSK fuzzy classifiers run quickly with high interpretability, however they usually require more fuzzy rules and perform relatively not very well. Address this issue, a novel TSK fuzzy classifier embeded with knowledge distillation in deep learning called HTSK-LLM-DKD is proposed in this study. HTSK-LLM-DKD achieves the following distinctive characteristics: 1) It takes High-order TSK classifier as teacher model and Low-order TSK fuzzy classifier as student model, and leverages the proposed LLM-DKD (Least Learning Machine based Decoupling Knowledge Distillation) to distill the fuzzy dark knowledge from High-order TSK fuzzy classifier to Low-order TSK fuzzy classifier, which resulting in Low-order TSK fuzzy classifier endowed with enhanced performance surpassing or at least comparable to High-order TSK classifier, as well as high interpretability; specifically 2) The Negative Euclidean distance between the output of teacher model and each class is employed to obtain the teacher logits, and then it compute teacher/student soft labels by the softmax function with distillating temperature parameter; 3) By reformulating the Kullback-Leibler divergence, it decouples fuzzy dark knowledge into target class knowledge and non-target class knowledge, and transfers them to student model. The advantages of HTSK-LLM-DKD are verified on the benchmarking UCI datasets and a real dataset Cleveland heart disease, in terms of classification performance and model interpretability.
Submitted: Feb 16, 2023