Paper ID: 2302.08298
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao, Renyu Yang, Shenghao Qiu, Zheng Wang
Bayesian optimization (BO) is widely used to optimize expensive-to-evaluate black-box functions.BO first builds a surrogate model to represent the objective function and assesses its uncertainty. It then decides where to sample by maximizing an acquisition function (AF) based on the surrogate model. However, when dealing with high-dimensional problems, finding the global maximum of the AF becomes increasingly challenging. In such cases, the initialization of the AF maximizer plays a pivotal role, as an inadequate setup can severely hinder the effectiveness of the AF. This paper investigates a largely understudied problem concerning the impact of AF maximizer initialization on exploiting AFs' capability. Our large-scale empirical study shows that the widely used random initialization strategy often fails to harness the potential of an AF. In light of this, we propose a better initialization approach by employing multiple heuristic optimizers to leverage the historical data of black-box optimization to generate initial points for the AF maximize. We evaluate our approach with a range of heavily studied synthetic functions and real-world applications. Experimental results show that our techniques, while simple, can significantly enhance the standard BO and outperform state-of-the-art methods by a large margin in most test cases.
Submitted: Feb 16, 2023