Paper ID: 2302.09120
Robot path planning using deep reinforcement learning
Miguel Quinones-Ramirez, Jorge Rios-Martinez, Victor Uc-Cetina
Autonomous navigation is challenging for mobile robots, especially in an unknown environment. Commonly, the robot requires multiple sensors to map the environment, locate itself, and make a plan to reach the target. However, reinforcement learning methods offer an alternative to map-free navigation tasks by learning the optimal actions to take. In this article, deep reinforcement learning agents are implemented using variants of the deep Q networks method, the D3QN and rainbow algorithms, for both the obstacle avoidance and the goal-oriented navigation task. The agents are trained and evaluated in a simulated environment. Furthermore, an analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.
Submitted: Feb 17, 2023