Paper ID: 2302.09526

Mixed Semi-Supervised Generalized-Linear-Regression with applications to Deep-Learning and Interpolators

Oren Yuval, Saharon Rosset

We present a methodology for using unlabeled data to design semi supervised learning (SSL) methods that improve the prediction performance of supervised learning for regression tasks. The main idea is to design different mechanisms for integrating the unlabeled data, and include in each of them a mixing parameter $\alpha$, controlling the weight given to the unlabeled data. Focusing on Generalized Linear Models (GLM) and linear interpolators classes of models, we analyze the characteristics of different mixing mechanisms, and prove that in all cases, it is invariably beneficial to integrate the unlabeled data with some nonzero mixing ratio $\alpha>0$, in terms of predictive performance. Moreover, we provide a rigorous framework to estimate the best mixing ratio $\alpha^*$ where mixed SSL delivers the best predictive performance, while using the labeled and unlabeled data on hand. The effectiveness of our methodology in delivering substantial improvement compared to the standard supervised models, in a variety of settings, is demonstrated empirically through extensive simulation, in a manner that supports the theoretical analysis. We also demonstrate the applicability of our methodology (with some intuitive modifications) to improve more complex models, such as deep neural networks, in real-world regression tasks.

Submitted: Feb 19, 2023