Paper ID: 2302.09584

DGP-Net: Dense Graph Prototype Network for Few-Shot SAR Target Recognition

Xiangyu Zhou, Qianru Wei, Yuhui Zhang

The inevitable feature deviation of synthetic aperture radar (SAR) image due to the special imaging principle (depression angle variation) leads to poor recognition accuracy, especially in few-shot learning (FSL). To deal with this problem, we propose a dense graph prototype network (DGP-Net) to eliminate the feature deviation by learning potential features, and classify by learning feature distribution. The role of the prototype in this model is to solve the problem of large distance between congeneric samples taken due to the contingency of single sampling in FSL, and enhance the robustness of the model. Experimental results on the MSTAR dataset show that the DGP-Net has good classification results for SAR images with different depression angles and the recognition accuracy of it is higher than typical FSL methods.

Submitted: Feb 19, 2023