Paper ID: 2302.10307

ViewCo: Discovering Text-Supervised Segmentation Masks via Multi-View Semantic Consistency

Pengzhen Ren, Changlin Li, Hang Xu, Yi Zhu, Guangrun Wang, Jianzhuang Liu, Xiaojun Chang, Xiaodan Liang

Recently, great success has been made in learning visual representations from text supervision, facilitating the emergence of text-supervised semantic segmentation. However, existing works focus on pixel grouping and cross-modal semantic alignment, while ignoring the correspondence among multiple augmented views of the same image. To overcome such limitation, we propose multi-\textbf{View} \textbf{Co}nsistent learning (ViewCo) for text-supervised semantic segmentation. Specifically, we first propose text-to-views consistency modeling to learn correspondence for multiple views of the same input image. Additionally, we propose cross-view segmentation consistency modeling to address the ambiguity issue of text supervision by contrasting the segment features of Siamese visual encoders. The text-to-views consistency benefits the dense assignment of the visual features by encouraging different crops to align with the same text, while the cross-view segmentation consistency modeling provides additional self-supervision, overcoming the limitation of ambiguous text supervision for segmentation masks. Trained with large-scale image-text data, our model can directly segment objects of arbitrary categories in a zero-shot manner. Extensive experiments show that ViewCo outperforms state-of-the-art methods on average by up to 2.9\%, 1.6\%, and 2.4\% mIoU on PASCAL VOC2012, PASCAL Context, and COCO, respectively.

Submitted: Jan 31, 2023