Paper ID: 2302.10784
Utilizing Domain Knowledge: Robust Machine Learning for Building Energy Prediction with Small, Inconsistent Datasets
Xia Chen, Manav Mahan Singh, Philipp Geyer
The demand for a huge amount of data for machine learning (ML) applications is currently a bottleneck in an empirically dominated field. We propose a method to combine prior knowledge with data-driven methods to significantly reduce their data dependency. In this study, component-based machine learning (CBML) as the knowledge-encoded data-driven method is examined in the context of energy-efficient building engineering. It encodes the abstraction of building structural knowledge as semantic information in the model organization. We design a case experiment to understand the efficacy of knowledge-encoded ML in sparse data input (1% - 0.0125% sampling rate). The result reveals its three advanced features compared with pure ML methods: 1. Significant improvement in the robustness of ML to extremely small-size and inconsistent datasets; 2. Efficient data utilization from different entities' record collections; 3. Characteristics of accepting incomplete data with high interpretability and reduced training time. All these features provide a promising path to alleviating the deployment bottleneck of data-intensive methods and contribute to efficient real-world data usage. Moreover, four necessary prerequisites are summarized in this study that ensures the target scenario benefits by combining prior knowledge and ML generalization.
Submitted: Jan 23, 2023