Paper ID: 2302.10895

CQnet: convex-geometric interpretation and constraining neural-network trajectories

Bas Peters

We introduce CQnet, a neural network with origins in the CQ algorithm for solving convex split-feasibility problems and forward-backward splitting. CQnet's trajectories are interpretable as particles that are tracking a changing constraint set via its point-to-set distance function while being elements of another constraint set at every layer. More than just a convex-geometric interpretation, CQnet accommodates learned and deterministic constraints that may be sample or data-specific and are satisfied by every layer and the output. Furthermore, the states in CQnet progress toward another constraint set at every layer. We provide proof of stability/nonexpansiveness with minimal assumptions. The combination of constraint handling and stability put forward CQnet as a candidate for various tasks where prior knowledge exists on the network states or output.

Submitted: Feb 9, 2023