Paper ID: 2302.12196
Calibrated Regression Against An Adversary Without Regret
Shachi Deshpande, Charles Marx, Volodymyr Kuleshov
We are interested in probabilistic prediction in online settings in which data does not follow a probability distribution. Our work seeks to achieve two goals: (1) producing valid probabilities that accurately reflect model confidence; and (2) ensuring that traditional notions of performance (e.g., high accuracy) still hold. We introduce online algorithms guaranteed to achieve these goals on arbitrary streams of data points, including data chosen by an adversary. Specifically, our algorithms produce forecasts that are (1) calibrated -- i.e., an 80% confidence interval contains the true outcome 80% of the time -- and (2) have low regret relative to a user-specified baseline model. We implement a post-hoc recalibration strategy that provably achieves these goals in regression; previous algorithms applied to classification or achieved (1) but not (2). In the context of Bayesian optimization, an online model-based decision-making task in which the data distribution shifts over time, our method yields accelerated convergence to improved optima.
Submitted: Feb 23, 2023