Paper ID: 2302.12407

HyperAttack: Multi-Gradient-Guided White-box Adversarial Structure Attack of Hypergraph Neural Networks

Chao Hu, Ruishi Yu, Binqi Zeng, Yu Zhan, Ying Fu, Quan Zhang, Rongkai Liu, Heyuan Shi

Hypergraph neural networks (HGNN) have shown superior performance in various deep learning tasks, leveraging the high-order representation ability to formulate complex correlations among data by connecting two or more nodes through hyperedge modeling. Despite the well-studied adversarial attacks on Graph Neural Networks (GNN), there is few study on adversarial attacks against HGNN, which leads to a threat to the safety of HGNN applications. In this paper, we introduce HyperAttack, the first white-box adversarial attack framework against hypergraph neural networks. HyperAttack conducts a white-box structure attack by perturbing hyperedge link status towards the target node with the guidance of both gradients and integrated gradients. We evaluate HyperAttack on the widely-used Cora and PubMed datasets and three hypergraph neural networks with typical hypergraph modeling techniques. Compared to state-of-the-art white-box structural attack methods for GNN, HyperAttack achieves a 10-20X improvement in time efficiency while also increasing attack success rates by 1.3%-3.7%. The results show that HyperAttack can achieve efficient adversarial attacks that balance effectiveness and time costs.

Submitted: Feb 24, 2023