Paper ID: 2302.13336
Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee OsteoArthritis Classification
Zhe Wang, Aladine Chetouani, Rachid Jennane
Knee OsteoArthritis (KOA) is a prevalent musculoskeletal condition that impairs the mobility of senior citizens. The lack of sufficient data in the medical field is always a challenge for training a learning model due to the high cost of labelling. At present, Deep neural network training strongly depends on data augmentation to improve the model's generalization capability and avoid over-fitting. However, existing data augmentation operations, such as rotation, gamma correction, etc., are designed based on the original data, which does not substantially increase the data diversity. In this paper, we propose a learning model based on the convolutional Auto-Encoder and a hybrid loss strategy to generate new data for early KOA (KL-0 vs KL-2) diagnosis. Four hidden layers are designed among the encoder and decoder, which represent the key and unrelated features of each input, respectively. Then, two key feature vectors are exchanged to obtain the generated images. To do this, a hybrid loss function is derived using different loss functions with optimized weights to supervise the reconstruction and key-exchange learning. Experimental results show that the generated data are valid as they can significantly improve the model's classification performance.
Submitted: Feb 26, 2023