Paper ID: 2302.13877

DeepADMR: A Deep Learning based Anomaly Detection for MANET Routing

Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin A. Larson

We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.

Submitted: Jan 24, 2023