Paper ID: 2303.01068

Targeted Adversarial Attacks against Neural Machine Translation

Sahar Sadrizadeh, AmirHossein Dabiri Aghdam, Ljiljana Dolamic, Pascal Frossard

Neural Machine Translation (NMT) systems are used in various applications. However, it has been shown that they are vulnerable to very small perturbations of their inputs, known as adversarial attacks. In this paper, we propose a new targeted adversarial attack against NMT models. In particular, our goal is to insert a predefined target keyword into the translation of the adversarial sentence while maintaining similarity between the original sentence and the perturbed one in the source domain. To this aim, we propose an optimization problem, including an adversarial loss term and a similarity term. We use gradient projection in the embedding space to craft an adversarial sentence. Experimental results show that our attack outperforms Seq2Sick, the other targeted adversarial attack against NMT models, in terms of success rate and decrease in translation quality. Our attack succeeds in inserting a keyword into the translation for more than 75% of sentences while similarity with the original sentence stays preserved.

Submitted: Mar 2, 2023