Paper ID: 2303.01197
Document Provenance and Authentication through Authorship Classification
Muhammad Tayyab Zamir, Muhammad Asif Ayub, Jebran Khan, Muhammad Jawad Ikram, Nasir Ahmad, Kashif Ahmad
Style analysis, which is relatively a less explored topic, enables several interesting applications. For instance, it allows authors to adjust their writing style to produce a more coherent document in collaboration. Similarly, style analysis can also be used for document provenance and authentication as a primary step. In this paper, we propose an ensemble-based text-processing framework for the classification of single and multi-authored documents, which is one of the key tasks in style analysis. The proposed framework incorporates several state-of-the-art text classification algorithms including classical Machine Learning (ML) algorithms, transformers, and deep learning algorithms both individually and in merit-based late fusion. For the merit-based late fusion, we employed several weight optimization and selection methods to assign merit-based weights to the individual text classification algorithms. We also analyze the impact of the characters on the task that are usually excluded in NLP applications during pre-processing by conducting experiments on both clean and un-clean data. The proposed framework is evaluated on a large-scale benchmark dataset, significantly improving performance over the existing solutions.
Submitted: Mar 2, 2023