Paper ID: 2303.01504

Backdoor for Debias: Mitigating Model Bias with Backdoor Attack-based Artificial Bias

Shangxi Wu, Qiuyang He, Dongyuan Lu, Jian Yu, Jitao Sang

With the swift advancement of deep learning, state-of-the-art algorithms have been utilized in various social situations. Nonetheless, some algorithms have been discovered to exhibit biases and provide unequal results. The current debiasing methods face challenges such as poor utilization of data or intricate training requirements. In this work, we found that the backdoor attack can construct an artificial bias similar to the model bias derived in standard training. Considering the strong adjustability of backdoor triggers, we are motivated to mitigate the model bias by carefully designing reverse artificial bias created from backdoor attack. Based on this, we propose a backdoor debiasing framework based on knowledge distillation, which effectively reduces the model bias from original data and minimizes security risks from the backdoor attack. The proposed solution is validated on both image and structured datasets, showing promising results. This work advances the understanding of backdoor attacks and highlights its potential for beneficial applications. The code for the study can be found at \url{https://anonymous.4open.science/r/DwB-BC07/}.

Submitted: Mar 1, 2023