Paper ID: 2303.02451

Tensorized LSSVMs for Multitask Regression

Jiani Liu, Qinghua Tao, Ce Zhu, Yipeng Liu, Johan A. K. Suykens

Multitask learning (MTL) can utilize the relatedness between multiple tasks for performance improvement. The advent of multimodal data allows tasks to be referenced by multiple indices. High-order tensors are capable of providing efficient representations for such tasks, while preserving structural task-relations. In this paper, a new MTL method is proposed by leveraging low-rank tensor analysis and constructing tensorized Least Squares Support Vector Machines, namely the tLSSVM-MTL, where multilinear modelling and its nonlinear extensions can be flexibly exerted. We employ a high-order tensor for all the weights with each mode relating to an index and factorize it with CP decomposition, assigning a shared factor for all tasks and retaining task-specific latent factors along each index. Then an alternating algorithm is derived for the nonconvex optimization, where each resulting subproblem is solved by a linear system. Experimental results demonstrate promising performances of our tLSSVM-MTL.

Submitted: Mar 4, 2023