Paper ID: 2303.02731

Virtual Guidance as a Mid-level Representation for Navigation

Hsuan-Kung Yang, Tsung-Chih Chiang, Ting-Ru Liu, Chun-Wei Huang, Jou-Min Liu, Chun-Yi Lee

In the context of autonomous navigation, effectively conveying abstract navigational cues to agents in dynamic environments poses challenges, particularly when the navigation information is multimodal. To address this issue, the paper introduces a novel technique termed "Virtual Guidance," which is designed to visually represent non-visual instructional signals. These visual cues, rendered as colored paths or spheres, are overlaid onto the agent's camera view, serving as easily comprehensible navigational instructions. We evaluate our proposed method through experiments in both simulated and real-world settings. In the simulated environments, our virtual guidance outperforms baseline hybrid approaches in several metrics, including adherence to planned routes and obstacle avoidance. Furthermore, we extend the concept of virtual guidance to transform text-prompt-based instructions into a visually intuitive format for real-world experiments. Our results validate the adaptability of virtual guidance and its efficacy in enabling policy transfer from simulated scenarios to real-world ones.

Submitted: Mar 5, 2023