Paper ID: 2303.03094

Benchmark of Data Preprocessing Methods for Imbalanced Classification

Radovan Haluška, Jan Brabec, Tomáš Komárek

Severe class imbalance is one of the main conditions that make machine learning in cybersecurity difficult. A variety of dataset preprocessing methods have been introduced over the years. These methods modify the training dataset by oversampling, undersampling or a combination of both to improve the predictive performance of classifiers trained on this dataset. Although these methods are used in cybersecurity occasionally, a comprehensive, unbiased benchmark comparing their performance over a variety of cybersecurity problems is missing. This paper presents a benchmark of 16 preprocessing methods on six cybersecurity datasets together with 17 public imbalanced datasets from other domains. We test the methods under multiple hyperparameter configurations and use an AutoML system to train classifiers on the preprocessed datasets, which reduces potential bias from specific hyperparameter or classifier choices. Special consideration is also given to evaluating the methods using appropriate performance measures that are good proxies for practical performance in real-world cybersecurity systems. The main findings of our study are: 1) Most of the time, a data preprocessing method that improves classification performance exists. 2) Baseline approach of doing nothing outperformed a large portion of methods in the benchmark. 3) Oversampling methods generally outperform undersampling methods. 4) The most significant performance gains are brought by the standard SMOTE algorithm and more complicated methods provide mainly incremental improvements at the cost of often worse computational performance.

Submitted: Mar 6, 2023