Paper ID: 2303.03166

Faster Learning of Temporal Action Proposal via Sparse Multilevel Boundary Generator

Qing Song, Yang Zhou, Mengjie Hu, Chun Liu

Temporal action localization in videos presents significant challenges in the field of computer vision. While the boundary-sensitive method has been widely adopted, its limitations include incomplete use of intermediate and global information, as well as an inefficient proposal feature generator. To address these challenges, we propose a novel framework, Sparse Multilevel Boundary Generator (SMBG), which enhances the boundary-sensitive method with boundary classification and action completeness regression. SMBG features a multi-level boundary module that enables faster processing by gathering boundary information at different lengths. Additionally, we introduce a sparse extraction confidence head that distinguishes information inside and outside the action, further optimizing the proposal feature generator. To improve the synergy between multiple branches and balance positive and negative samples, we propose a global guidance loss. Our method is evaluated on two popular benchmarks, ActivityNet-1.3 and THUMOS14, and is shown to achieve state-of-the-art performance, with a better inference speed (2.47xBSN++, 2.12xDBG). These results demonstrate that SMBG provides a more efficient and simple solution for generating temporal action proposals. Our proposed framework has the potential to advance the field of computer vision and enhance the accuracy and speed of temporal action localization in video analysis.The code and models are made available at \url{https://github.com/zhouyang-001/SMBG-for-temporal-action-proposal}.

Submitted: Mar 6, 2023