Paper ID: 2303.03327
Tight Bounds for $\gamma$-Regret via the Decision-Estimation Coefficient
Margalit Glasgow, Alexander Rakhlin
In this work, we give a statistical characterization of the $\gamma$-regret for arbitrary structured bandit problems, the regret which arises when comparing against a benchmark that is $\gamma$ times the optimal solution. The $\gamma$-regret emerges in structured bandit problems over a function class $\mathcal{F}$ where finding an exact optimum of $f \in \mathcal{F}$ is intractable. Our characterization is given in terms of the $\gamma$-DEC, a statistical complexity parameter for the class $\mathcal{F}$, which is a modification of the constrained Decision-Estimation Coefficient (DEC) of Foster et al., 2023 (and closely related to the original offset DEC of Foster et al., 2021). Our lower bound shows that the $\gamma$-DEC is a fundamental limit for any model class $\mathcal{F}$: for any algorithm, there exists some $f \in \mathcal{F}$ for which the $\gamma$-regret of that algorithm scales (nearly) with the $\gamma$-DEC of $\mathcal{F}$. We provide an upper bound showing that there exists an algorithm attaining a nearly matching $\gamma$-regret. Due to significant challenges in applying the prior results on the DEC to the $\gamma$-regret case, both our lower and upper bounds require novel techniques and a new algorithm.
Submitted: Mar 6, 2023