Paper ID: 2303.03660
ECG Classification System for Arrhythmia Detection Using Convolutional Neural Networks
Aryan Odugoudar, Jaskaran Singh Walia
Arrhythmia is just one of the many cardiovascular illnesses that have been extensively studied throughout the years. Using multi-lead ECG data, this research describes a deep learning (DL) pipeline technique based on convolutional neural network (CNN) algorithms to detect cardiovascular lar arrhythmia in patients. The suggested model architecture has hidden layers with a residual block in addition to the input and output layers. In this study, the classification of the ECG signals into five main groups, namely: Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Atrial Premature Contraction (APC), Premature Ventricular Contraction (PVC), and Normal Beat (N), are performed. Using the MIT-BIH arrhythmia dataset, we assessed the suggested technique. The findings show that our suggested strategy classified 15,000 cases with a high accuracy of 98.2%
Submitted: Mar 7, 2023