Paper ID: 2303.04427
Self-Supervised Learning for Group Equivariant Neural Networks
Yusuke Mukuta, Tatsuya Harada
This paper proposes a method to construct pretext tasks for self-supervised learning on group equivariant neural networks. Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input. Therefore, it is important to construct pretext tasks for self-supervised learning that do not contradict this equivariance. To ensure that training is consistent with the equivariance, we propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss. Equivariant pretext labels use a set of labels on which we can define the transformations that correspond to the input change. Invariant contrastive loss uses a modified contrastive loss that absorbs the effect of transformations on each input. Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed equivariant self-supervised tasks.
Submitted: Mar 8, 2023