Paper ID: 2303.04998
Rethinking Visual Prompt Learning as Masked Visual Token Modeling
Ning Liao, Bowen Shi, Xiaopeng Zhang, Min Cao, Junchi Yan, Qi Tian
Prompt learning has achieved great success in efficiently exploiting large-scale pre-trained models in natural language processing (NLP). It reformulates the downstream tasks as the generative pre-training ones to achieve consistency, thus improving the performance stably. However, when transferring it to the vision area, current visual prompt learning methods are almost designed on discriminative pre-trained models, and there is also a lack of careful design to unify the forms of pre-training and downstream tasks. To explore prompt learning on the generative pre-trained visual model, as well as keeping the task consistency, we propose Visual Prompt learning as masked visual Token Modeling (VPTM) to transform the downstream visual classification into the pre-trained masked visual token prediction. In addition, we develop the prototypical verbalizer for mapping the predicted visual token with implicit semantics to explicit downstream labels. To our best knowledge, VPTM is the first visual prompt method on the generative pre-trained visual model, which achieves consistency between pre-training and downstream visual classification by task reformulation. Experiments show that VPTM outperforms other visual prompt methods and achieves excellent efficiency. Moreover, the task consistency of VPTM contributes to the robustness against prompt location, prompt length and prototype dimension, and could be deployed uniformly.
Submitted: Mar 9, 2023