Paper ID: 2303.05122
M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios
Ning Liao, Xiaopeng Zhang, Min Cao, Junchi Yan, Qi Tian
In realistic open-set scenarios where labels of a part of testing data are totally unknown, when vision-language (VL) prompt learning methods encounter inputs related to unknown classes (i.e., not seen during training), they always predict them as one of the training classes. The exhibited label bias causes difficulty in open set recognition (OSR), in which an image should be correctly predicted as one of the known classes or the unknown one. To achieve this goal, we propose a vision-language prompt tuning method with mitigated label bias (M-Tuning). It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario. Besides, inspired by the observation that classifying directly on large datasets causes a much higher false positive rate than on small datasets, we propose a Combinatorial Tuning and Testing (CTT) strategy for improving performance. CTT decomposes M-Tuning on large datasets as multiple independent group-wise tuning on fewer classes, then makes accurate and comprehensive predictions by selecting the optimal sub-prompt. Finally, given the lack of VL-based OSR baselines in the literature, especially for prompt methods, we contribute new baselines for fair comparisons. Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
Submitted: Mar 9, 2023