Paper ID: 2303.05193

GOATS: Goal Sampling Adaptation for Scooping with Curriculum Reinforcement Learning

Yaru Niu, Shiyu Jin, Zeqing Zhang, Jiacheng Zhu, Ding Zhao, Liangjun Zhang

In this work, we first formulate the problem of robotic water scooping using goal-conditioned reinforcement learning. This task is particularly challenging due to the complex dynamics of fluids and the need to achieve multi-modal goals. The policy is required to successfully reach both position goals and water amount goals, which leads to a large convoluted goal state space. To overcome these challenges, we introduce Goal Sampling Adaptation for Scooping (GOATS), a curriculum reinforcement learning method that can learn an effective and generalizable policy for robot scooping tasks. Specifically, we use a goal-factorized reward formulation and interpolate position goal distributions and amount goal distributions to create curriculum throughout the learning process. As a result, our proposed method can outperform the baselines in simulation and achieves 5.46% and 8.71% amount errors on bowl scooping and bucket scooping tasks, respectively, under 1000 variations of initial water states in the tank and a large goal state space. Besides being effective in simulation environments, our method can efficiently adapt to noisy real-robot water-scooping scenarios with diverse physical configurations and unseen settings, demonstrating superior efficacy and generalizability. The videos of this work are available on our project page: https://sites.google.com/view/goatscooping.

Submitted: Mar 9, 2023