Paper ID: 2303.06338
Learning Combinatorial Prompts for Universal Controllable Image Captioning
Zhen Wang, Jun Xiao, Yueting Zhuang, Fei Gao, Jian Shao, Long Chen
Controllable Image Captioning (CIC) -- generating natural language descriptions about images under the guidance of given control signals -- is one of the most promising directions towards next-generation captioning systems. Till now, various kinds of control signals for CIC have been proposed, ranging from content-related control to structure-related control. However, due to the format and target gaps of different control signals, all existing CIC works (or architectures) only focus on one certain control signal, and overlook the human-like combinatorial ability. By ``combinatorial", we mean that our humans can easily meet multiple needs (or constraints) simultaneously when generating descriptions. To this end, we propose a novel prompt-based framework for CIC by learning Combinatorial Prompts, dubbed as ComPro. Specifically, we directly utilize a pretrained language model GPT-2 as our language model, which can help to bridge the gap between different signal-specific CIC architectures. Then, we reformulate the CIC as a prompt-guide sentence generation problem, and propose a new lightweight prompt generation network to generate the combinatorial prompts for different kinds of control signals. For different control signals, we further design a new mask attention mechanism to realize the prompt-based CIC. Due to its simplicity, our ComPro can be further extended to more kinds of combined control signals by concatenating these prompts. Extensive experiments on two prevalent CIC benchmarks have verified the effectiveness and efficiency of our ComPro on both single and combined control signals.
Submitted: Mar 11, 2023