Paper ID: 2303.07068
n-Step Temporal Difference Learning with Optimal n
Lakshmi Mandal, Shalabh Bhatnagar
We consider the problem of finding the optimal value of n in the n-step temporal difference (TD) learning algorithm. We find the optimal n by resorting to a model-free optimization technique involving a one-simulation simultaneous perturbation stochastic approximation (SPSA) based procedure that we adopt to the discrete optimization setting by using a random projection approach. We prove the convergence of our proposed algorithm, SDPSA, using a differential inclusions approach and show that it finds the optimal value of n in n-step TD. Through experiments, we show that the optimal value of n is achieved with SDPSA for arbitrary initial values.
Submitted: Mar 13, 2023