Paper ID: 2303.07154
Differential Good Arm Identification
Yun-Da Tsai, Tzu-Hsien Tsai, Shou-De Lin
This paper targets a variant of the stochastic multi-armed bandit problem called good arm identification (GAI). GAI is a pure-exploration bandit problem with the goal to output as many good arms using as few samples as possible, where a good arm is defined as an arm whose expected reward is greater than a given threshold. In this work, we propose DGAI - a differentiable good arm identification algorithm to improve the sample complexity of the state-of-the-art HDoC algorithm in a data-driven fashion. We also showed that the DGAI can further boost the performance of a general multi-arm bandit (MAB) problem given a threshold as a prior knowledge to the arm set. Extensive experiments confirm that our algorithm outperform the baseline algorithms significantly in both synthetic and real world datasets for both GAI and MAB tasks.
Submitted: Mar 13, 2023