Paper ID: 2303.07347

TriDet: Temporal Action Detection with Relative Boundary Modeling

Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, Dacheng Tao

In this paper, we present a one-stage framework TriDet for temporal action detection. Existing methods often suffer from imprecise boundary predictions due to the ambiguous action boundaries in videos. To alleviate this problem, we propose a novel Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. In the feature pyramid of TriDet, we propose an efficient Scalable-Granularity Perception (SGP) layer to mitigate the rank loss problem of self-attention that takes place in the video features and aggregate information across different temporal granularities. Benefiting from the Trident-head and the SGP-based feature pyramid, TriDet achieves state-of-the-art performance on three challenging benchmarks: THUMOS14, HACS and EPIC-KITCHEN 100, with lower computational costs, compared to previous methods. For example, TriDet hits an average mAP of $69.3\%$ on THUMOS14, outperforming the previous best by $2.5\%$, but with only $74.6\%$ of its latency. The code is released to https://github.com/sssste/TriDet.

Submitted: Mar 13, 2023