Paper ID: 2303.07477

Efficient Self-supervised Continual Learning with Progressive Task-correlated Layer Freezing

Li Yang, Sen Lin, Fan Zhang, Junshan Zhang, Deliang Fan

Inspired by the success of Self-supervised learning (SSL) in learning visual representations from unlabeled data, a few recent works have studied SSL in the context of continual learning (CL), where multiple tasks are learned sequentially, giving rise to a new paradigm, namely self-supervised continual learning (SSCL). It has been shown that the SSCL outperforms supervised continual learning (SCL) as the learned representations are more informative and robust to catastrophic forgetting. However, if not designed intelligently, the training complexity of SSCL may be prohibitively high due to the inherent training cost of SSL. In this work, by investigating the task correlations in SSCL setup first, we discover an interesting phenomenon that, with the SSL-learned background model, the intermediate features are highly correlated between tasks. Based on this new finding, we propose a new SSCL method with layer-wise freezing which progressively freezes partial layers with the highest correlation ratios for each task to improve training computation efficiency and memory efficiency. Extensive experiments across multiple datasets are performed, where our proposed method shows superior performance against the SoTA SSCL methods under various SSL frameworks. For example, compared to LUMP, our method achieves 12\%/14\%/12\% GPU training time reduction, 23\%/26\%/24\% memory reduction, 35\%/34\%/33\% backward FLOPs reduction, and 1.31\%/1.98\%/1.21\% forgetting reduction without accuracy degradation on three datasets, respectively.

Submitted: Mar 13, 2023