Paper ID: 2303.08070
Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant
Seyed Muhammad Hossein Mousavi
The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.
Submitted: Jan 22, 2023